

-----000------

Use of redworms (*Perionyx excavatus*) to manage agricultural wastes and supply valuable feed for poultry

Vu Dinh Ton, Han Quang Hanh, Nguyen Dinh Linh and Nguyen Van Duy

Hanoi University of Agriculture

Email: <u>vdton@hua.edu.vn</u> hanquanghanh1304@gmail.com

Fertilizer

Vermiprotein:

- 50–75% protein (DM)
- 7–10% fat (DM)
- Essential amino acid
- Vitamins (B1, B3, B12, B6)
- Minerals (Ca, P, Fe)

-----000------

-----000------

Experiment 1. Vermicompost and worm growth

Materials (%)	Treatment 1 (fresh)	Treatment 2 (composted)	Treatment 3 (composted)	Treatment 4 (composted)
Cattle manure	100	50	50	0
Pig manure	0	50	40	90
Rice straw	0	0	10	10
Worms				
Replicates	4	4	4	4
Initial weight, g	500	500	500	500
Days of Composting	45	45	45	45

-----000------

Chemical analysis of substrate and vermicompost

- •Total N: were measured by Kjeldahl method: H_2SO_4 , d=1.84 +
- $C_6H_4(COOH)(OH) + (copper sulphate + selenium, potassium sulphate)$
- **Total P**: Perchloric acid (HCLO₄ 70%), colorimetric method based on vanadomolybdate
- Some exchangeable cations in an extract (K, Na and Mg): the technique of flame atomic emission spectrophotometry
- $\mathbf{NH_4^+}$: Nessler (K₂HgI₄)
- **NO**₃⁻: Cataldo method

Central Lab of Land and Water Resource Management, HUA

-----000------

Experiment 2. Feeding Chicken with worms

- Chickens: 148 heads of broiler (Ho x Luong Phuong) 4 10 wk of age were divided into 3 experimental groups and 1 control one
- Basic diets: Based on commercial feed, maize, rice bran/starched rice. Two diets: 19% protein, 5% fat (22 to 42 days of age) and 16% protein, 6% fat (43 to 70 days of age) (NRC guidelines)
- Worms: Supplemented with 1; 1.5 and 2 % on DM of basic diet by fresh form
- Chicken access ad libitum to feed and water

Measurement on chicken

- Average body weight (g) and feed intake (kg) were calculated at 4, 5, 6, 7,
- 8, 9 and 10 wk of age from pen data
- **Carcass yield**: Chickens were slaughtered and carcass yield (deboned breast, thigh, abdominal fat, etc) were recorded
- Meat quality: Breast muscles were removed from the carcass at 30 min postmortem and stored at 2-4°C
- ✓ pH_{12} ; pH_{72} : by pH meter (Model 240)
- ✓ Color (L*, a*, b*): colorimeter (Model CR-200), C.I.E. 1978
- ✓ **Drip loss**: percentage of moisture loss during storage $(2-4^{\circ}C)$
- ✓ **Cooking loss**: percentage of weight loss after cooking on aluminum trays at 85⁰C for 45 minutes in steam

-----000------

Results and discussion

"Livestock, Climate Change and the Environment"

-----000------

Table 1. Worm biomass gain and growth rate

Parameters	Treatment 1	Treatment 2	Treatment 3	Treatment 4
Initial weight, g	500	500	500	500
Finished weight, g	1213	937	750	700
Net weight gained, g	713 ± 12.6^{a}	437 ± 37.5^{ab}	250 ± 61.2^{b}	200 ± 61.2^{b}
Growth rate, %	242.6	187.4	150	140

Mean values followed by different letters are statiscally different (ANOVA, Duncan multiple-ranged test; P < 0.05)

"Livestock, Climate Change and the Environment"

 Table 2. Chemical composition of fresh/composted substrates (FS/CS) and vermicompost (VC)

Para	Fresh	Treatr	nent 1	Treatr	nent 2	Treatment 3		Treatment 4	
meters Pig Manure	FS	VC	CS	VC	CS	VC	CS	VC	
DM, %	33.9	19.2	23.0	30.0	32.9	34.2	28.4	38.0	31.3
N, %	1.87	1.73	1.55	1.83	1.01	1.54	1.24	1.34	1.05
P, %	1.01	0.84	1.25	0.83	1.13	0.87	1.20	0.86	1.46
K, %	0.57	0.63	0.83	0.56	0.67	0.52	0.61	0.43	0.66
Ca, %	1.24	0.89	1.60	1.15	1.66	0.95	1.74	1.27	1.92
Mg, %	0.77	0.59	0.77	0.72	0.71	0.66	0.75	0.67	0.80
NO ₃ -, mg/kg	41.45	84.52	124	16.67	791	20.6	236	16.6	224
NH _{3,} mg/kg	3293	975	107	597	561	115	64.9	133	55.1
NH4 ⁺ , mg/kg	4234	1254	137	768	83.7	148	83.44	171	70.8

"Livestock, Climate Change and the Environment"

-----000------

Table 3. Body weight of chickens at different weeks of age (g/head, Mean ± SEm, n=37)

Week of	Control	Group 1	Group 2	Group 3
age	Control	(1% worms)	(1.5 % worms)	(2% worms)
4	530 ± 19.0	520 ± 18.1	526 ± 16.6	528 ± 17.4
5	700 ± 18.0	699 ± 18.0	697 ± 16.9	707 ± 16.0
6	894 ± 18.7	893 ± 18.0	916 ± 17.6	925 ± 19.2
7	1115 ± 18.2	1125 ± 24.5	1131 ± 19.9	1166 ± 21.1
8	1348 ± 19.9	1378 ± 22.6	1382 ± 22.6	1408 ± 27.4
9	$1590 \pm 17.7^{\mathrm{a}}$	1638 ± 19.5^{ab}	1649 ± 24.2^{ab}	1684 ± 30.7^{b}
10	1823 ± 20.0^{a}	1842 ± 17.9^{ab}	1911 ± 19.0^{ab}	1925 ± 36.2^{b}

Mean values followed by different letters are statistically different (ANOVA, Duncan multiple-ranged test; P < 0.05)

-----000------

"Livestock, Climate Change and the Environment"

Table 4. Feed conversion efficiency (kg)

Week of age	Control	Group 1 (1% worms)	Group 2 (1.5 % worms)	Group 3 (2% worms)
5	2.60	2.52	2.65	2.59
6	2.65	2.68	2.72	2.78
7	3.03	3.06	2.89	2.87
8	3.20	3.23	3.05	2.93
9	3.52	3.50	3.13	3.10
10	3.97	3.94	3.69	3.41
Average	3.16	3.16	3.02	2.95

"Livestock, Climate Change and the Environment"

------000------

Table 5. Carcass yield of chicken

Parameters (%)	Control	Group 1 (1% worms)	Group 2 (1.5 % worms)	Group 3 (2% worms)
Carcass	68.1	67.7	68.3	69.9
Thigh meat	21.0	21.5	22.0	22.9
Breast meat	17.2	17.1	18.1	19.4
Abdominal fat	4.4	4.3	4.0	4.5
Eatable internal organs	8.8	9.2	9.6	8.8

"Livestock, Climate Change and the Environment"

-----000-**Table 6. Breast meat quality at 12h postmortem**

Parameters	Control	Group 1 (1% worms)	Group 2 (1.5 % worms)	Group 3 (2% worms)
pH ₁₂	5.65 ± 0.02	5.62 ± 0.02	5.62 ± 0.20	5.58 ± 0.01
Drip loss, %	2.04 ± 0.07	2.17 ± 0.14	2.11 ± 0.03	2.04 ± 0.07
Cooking loss, %	23.9 ± 0.30	23.9 ± 0.22	23.0 ± 0.43	22.7 ± 0.23
L*(lightness)	57.1±0.12	57.2 ± 0.10	57.5 ± 0.15	57.5±0.17
	(57.3 ± 0.25)	(57.2 ± 0.42)	(57.5 ± 0.14)	(57.4 ± 0.34)
a*(Redness)	$8.41{\pm}0.28$	10.3 ± 0.42	10.3 ± 0.36	10.2 ± 0.38
	(10.4 ± 0.45)	(10.3 ± 0.37)	(10.4 ± 0.54)	(10.5 ± 0.33)
b*(Yellowness)	20.9±1.33	20.0 ± 0.45	18.6 ± 1.25	20.7 ± 0.74
	(19.8 ± 0.64)	(20.2 ± 0.79)	(19.3 ± 0.89)	(19.6 ± 0.43)

Meat color values inside the brackets expressed for hen, outside the brackets expressed for cocks

"Livestock, Climate Change and the Environment"

-----000-**Table 7. Breast meat quality at 72h postmortem**

Parameters	Control	Group 1 (1% worms)	Group 2 (1.5 % worms)	Group 3 (2% worms)
pH ₇₂	5.68 ± 0.03	5.65 ± 0.02	5.64 ± 0.02	5.62 ± 0.02
Drip loss, %	2.28 ± 0.04	2.26 ± 0.06	2.10 ± 0.06	2.13 ± 0.05
Cooking loss, %	25.7 ± 0.55	24.7 ± 0.51	24.5 ± 0.22	25.4 ± 0.51
L*(lightness)	58.4 ± 0.27 (58.2 ± 0.21)	58.3 ± 0.12 (58.4 ± 0.27)	58.3 ± 0.30 (58.4 ± 0.16)	58.2 ± 0.38 (58.4 ± 0.44)
a*(Redness)	8.4 ± 0.28 (8.0 ± 0.25)	9.0 ± 0.29 (8.5 ± 0.31)	9.6 ± 0.28 (9.0 ± 0.72)	8.8 ± 0.31 (9.3 ± 0.24)
b*(Yellowness)	19.8 ± 0.52 (19.3 ± 0.55)	17.6 ± 0.92 (19.3 ± 0.63)	17.8 ± 0.53 (18.8 \pm 0.76)	19.4 ± 0.69 (18.1 ± 0.51)

Meat color values inside the brackets expressed for hen, outside the brackets expressed for cocks

-----0()0-

Vermiculture:

- Various types of wastes such as cattle and pig manure, rice straw, et... can be used with different ratio for redworm culture
- Feeding worms by 100% of fresh cattle manure resulted in the highest growth rates (net weight gained by 713 g or 243 % in growth rate after 45 days, P<0.05)
- Mixtures of cattle and pig manure in 50:50 ratio were also good for worms growth

-----000------

Vermicompost:

•Worms can break down efficiently complex organic matters into fertile products called vermicompost which have:

✓ Higher nutrients (increase by 0.3 - 0.6% P, 0.1 - 0.2% K and also Ca, Mg) in available and exchangeable forms (NO3-, NH₄⁺) as compared with initial substrates
 ✓ Lower levels of amoniac (NH₃). So, they have less influence on the environment

Supplementing worms in chicken's diets can:

-----000-

- ✓ Increase the growth rate or body weight, especially with 2% of worms (P<0.05)
- ✓ Reduce feed consumption or increases feed conversion efficiency (supplement with 2% reduced 0.21kg per each kg of weight growth or equal to 6.8%)
- ✓ Improve carcass yield without any affecting meat quality (pH, drip and cooking loss, colour) of chicken among groups

-----000------

Image 1. Weighting worms

-----000------

Image 3. Chicken access ad libitum to feed and water

-----000------

Image 3. Slaughter and identify carcass characteristics of chicken

-----000------

Thank you for your attention!