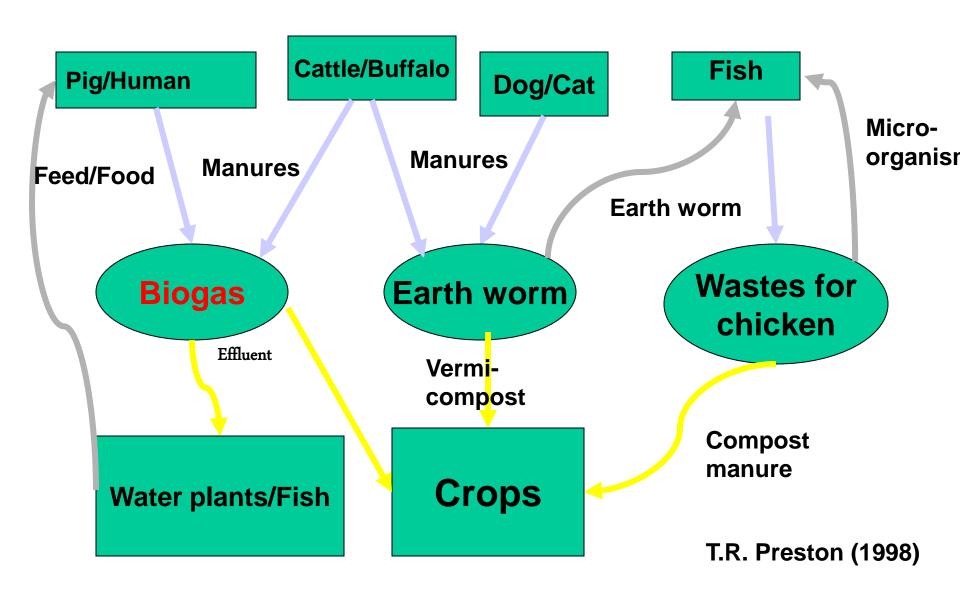
Situation and development trend of biodigester in Vietnam

Dr. Duong Nguyen Khang

Nong Lam University, Ho Chi Minh City


Introduction (1)

- Oil price increased with increasing energy demand
- Looking for the new energy to replace fossil fuel, including:
 - + Renewable energy: biogas
 - + Energy water (hydro), wind (turbine fan), solar
 - + Bio-energy (bio-fuel)
 - + ...
- There are the advantages/disadvantages for development and application

Introduction (2)

- Increase the number of livestock with increasing animal waste and polluting environment
- Good management on livestock waste:
 - + stop polluting, animal diseases ...
 - + create renewable energy for production
- Biogas is the best solution
- Using biogas for cooking, electricity
 - + Prevent global warm
 - + Prevent climate change
 - + Create the Clean development mechanism (CDM) CERs

Ways for animal waste treating

Situation (1)

- More than 70% population from agriculture
- 50% working on animal production
- Livestock wastes caused pollution water, soil, air...
- Using biodigester
 - Prevent pollution, animal infection diseases in the farms
 (Doelle, 1997)
 - Use gas for cooking, light, electricity... (Piccinini et al., 1998; Lusk, 1998; Moog et al., 1998)

Situation: Number of animals, 2008 (2)

Number	
6,720,000	
98,600	
2,920,000	
1,770,000	
103,480	
26,600,000	
226,000,000	

Situation: Manure and waste from animal/poultry, 2008 (3)

Animal	Manure/head (kg/day)		
Cattle, buffalo	14		
Pig	2.5		

Manure total (tonnes)		
40,000,000		
28,000,000		
10,000,000		

Situation: Gas production from animal waste (4)

Manure	Gas production (m³/ tonnes of manure)	Percent of metan (% volume)	
Cattle, Buffalo	260 - 280	7 0 (0	
Pig	561	50 - 60	

Biogas production from ruminant (buffalo and cattle) per day:

 $(3,000,000 + 6,800,000) \times 14 \times 0.36 = 4,939,200 \text{ m}^3 \text{ biogas/day}$

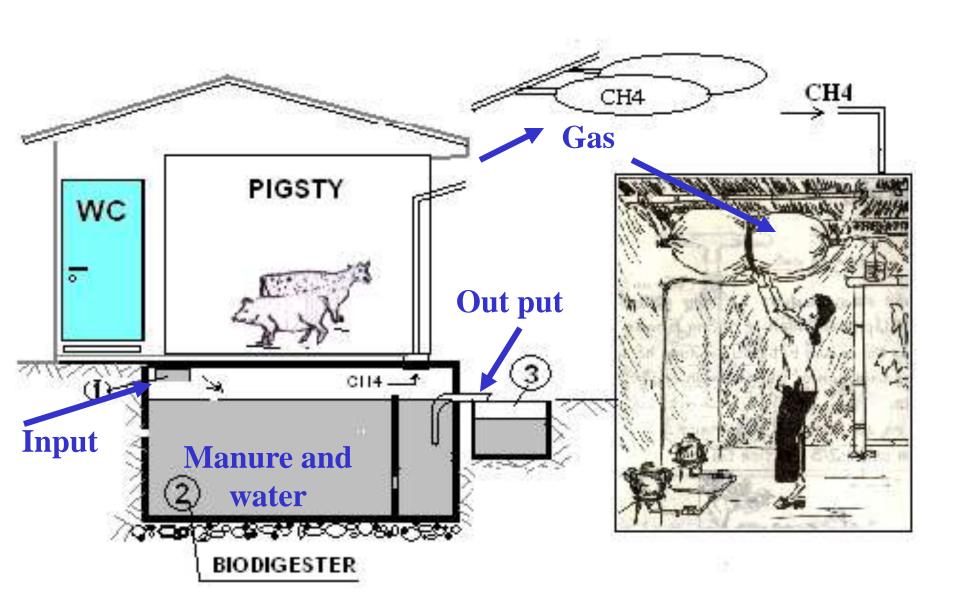
(1 kg of ruminant manure will produce 0.036 m³ biogas)

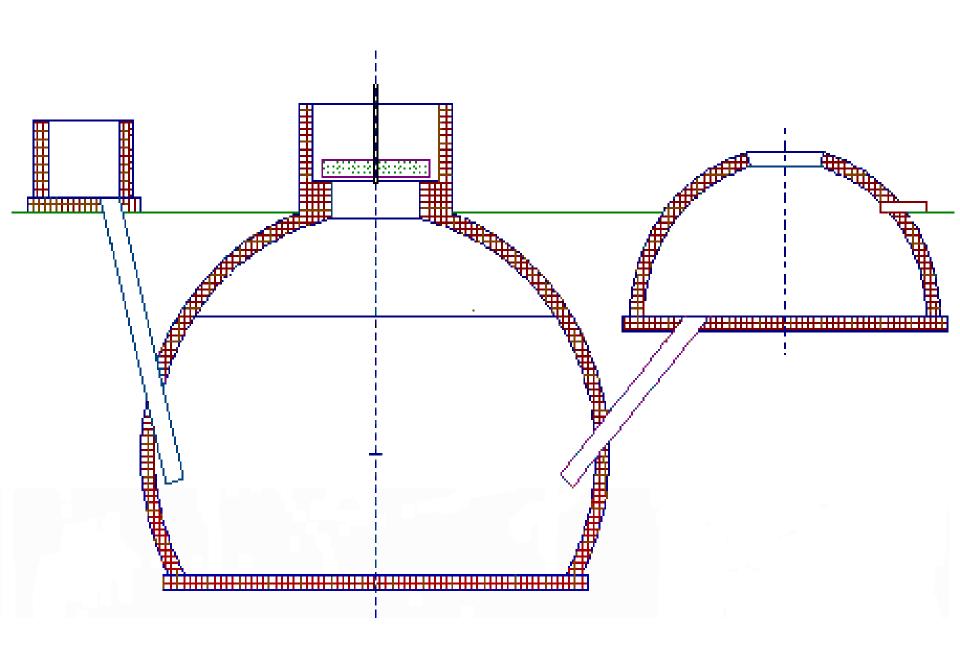
Biogas production from pig per day:

 $26,600,000 \times 2.5 \times 0.45 = 2,992,500 \text{ m}^3 \text{ biogas/day},$

(1 kg of pig manure will produce 0.045 m³ biogas)

Total biogas per day: 4,939,200 + 2,992,400 = 7,931,700 m³ biogas/day

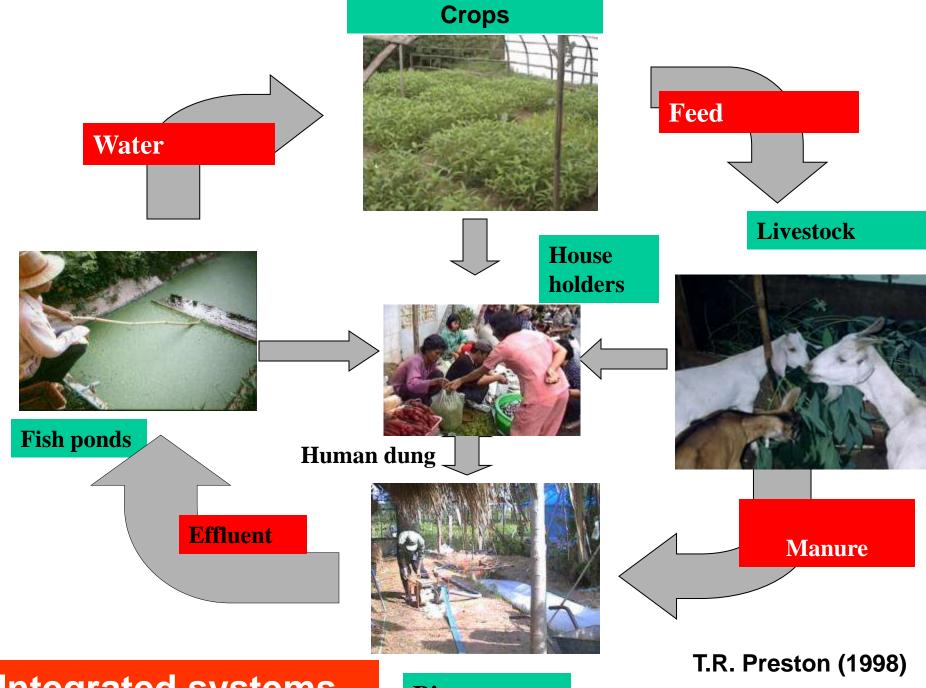

Change to gas petrol


 $1.15 \times 7,931,700 = 9,121,455$ litter gas petrol/day

Situation (5)

- Small biodigester system can not treat the animal waste for cleaning to achieve **B-level** standard
- How to treat animal waste water to come the fresh water

Characteristics of in/output manures


Parameters	Input manure	Output manure (Retention time (days) in biodigester)
COD	4.020	1.200 (20 days)
(mg/l)	2.450	640 (25 days)
	1.080	420 (30 days)
	640	170 (30 days)
E.coli	$52,89 \times 10^6$	$75,39 \times 10^3 (30 \text{ days})$
(MNP/ml)	6.8×10^{5}	$7.3 \times 10^4 (25 \text{ days})$
	$28,3 \times 10^5$	$1.9 \times 10^5 (20 \text{ days})$
Coliform	$266,78 \times 10^6$	$236,1 \times 10^3 (30 \text{ days})$
(MNP/ml)	$46,3 \times 10^6$	$26.9 \times 10^5 (25 \text{ days})$
	$87,8 \times 10^5$	$43 \times 10^5 (20 \text{ days})$

Situation (6)

- There were many designs
 - Nylon (Duong Nguyen Khang and T.R. Preston, 1992)
 - China KT1, KT2 (SNV)
- Both designs set up for small scale
- Effluent (after biodigester) still pollution
- Big designs for treating effluent for environment
- HDPE biodigester introduced and applied

Trend (1)

- Biogas is important part for integrated agricultural system in small holders
- Reducing metan, global warm and climate change ...

Integrated systems

Biogas

Trend (2)

Biodigester:

- Plastic bag for small scale
 - Easy to install, low cost
 - Simple action, less the operational costs
 - Easy to repair, do not need high technique

HDPE for small/bigger scale

- Low investment costs
- Simple action
- Easy to maintain
- Easy repair
- Provide the large amount of gas for generators

Solution: Biodigester system (1)

- Increasing the small/midle system in small holders
 - Treating animal waste
 - Gas production for cooking, electricity... CDM CERs
- Calculation the biodigester volume for better animal waste treating

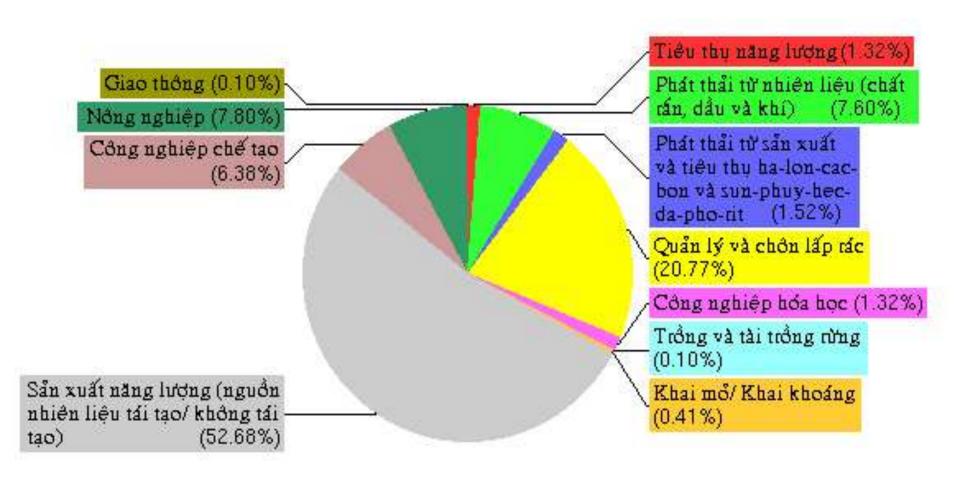
Solution: Biodigester system (2)

- HDPE biodigester:
 - Reduce pollution of the lager animal waste from the farms
 - Produce lager gas yield for generators
- Making the CDM CERs for selling...

Results on HDPE biodigester with different retention time

Retention time (days)					
10	20	30	40	SE	P
33.23	55.39	66.80	<u>71.05</u>	2.68	0.001
690.14	437.47	205.37	<u>113.67</u>	5.60	0.001
4.46	4.20	4.02	3.33	0.79	0.77
2.09	0.64	0.57	0.22	0.37	0.01
6.96	6.99	7.01	7.02	0.01	0.001
28.15	28.54	28.69	28.73	0.24	0.32
	33.23 690.14 4.46 2.09 6.96	33.23 55.39 690.14 437.47 4.46 4.20 2.09 0.64 6.96 6.99	33.23 55.39 66.80 690.14 437.47 205.37 4.46 4.20 4.02 2.09 0.64 0.57 6.96 6.99 7.01	33.23 55.39 66.80 71.05 690.14 437.47 205.37 113.67 4.46 4.20 4.02 3.33 2.09 0.64 0.57 0.22 6.96 6.99 7.01 7.02	10 20 30 40 SE 33.23 55.39 66.80 71.05 2.68 690.14 437.47 205.37 113.67 5.60 4.46 4.20 4.02 3.33 0.79 2.09 0.64 0.57 0.22 0.37 6.96 6.99 7.01 7.02 0.01

Solution: Clean the effluent (after biodigester) (3)



Solution: Clean development mechanism CDM (4)

Advantages from CDM

- Developed countries
 - Received CERs form CDM with low cost
 - Good investments, development and cooperation with developing countries
- Developing countries
 - Received money for activities in their factories
 - More well-being
 - Improvement on their environmental protection, their techniques on treating the waste water...

Solution: Where is CDM for selling? (5)

Conclutions

- Biogas is most important part in the intergrated agricultural system for sustainable development and prevent climate change
- Biogas for animal waste treating, renewable energy, global warm prevention, CDM certification
- HDPE biogas system is better for treating animal waste, waste from cassava/sugar cane/fish factories to achieve the clean water and more clean energy for production

Suggestions

- Government and NGO's more supporting for developing on treating animal waste
- Developing on HDPE biodigester system for small holders in rural areas
- More research on how to optimize on HDPE biodigester system

Thank you for your attention!