

NITRATE NITROGEN AS A FERMENTABLE NITROGEN SUPPLEMENT TO INHIBIT METHANE PRODUCTION IN CATTLE

Le Thi Ngoc Huyen, Ho Quang Do, Preston T R and Leng R A

2009

Ho Quang Do

www.ctu.edu.vn

INTRODUCTION

 Nitrate could potentially replace urea to provide a source of rumen ammonia (Hao, *et al* 2008).

✓ Nitrate is toxic when:

- Abnormally high and sudden intake of nitrate in a meal.
- o Lack of adaptation of rumen organism to nitrate
- o Diets excessively high in rumen degradable protein (Leng, 2008).

INTRODUCTION

- Is it hypothesised that:
 - Nitrate will be used efficiently and safely as major sourse of rumen ammonia in diets.
 - The diets used widely to support rumen production in non-industrialised countries are based mainly on agro industrial by products (Preston and Leng 1987).

- 1. There is considerable potentially to use nitrate to replace urea as major fermentable nitrogen source in cattle.
- 2. Nitrate as fermentable nitrogen supplement to inhibit methane production in cattle.

Animal: Three rumen fistulated Cattle were allocated with 3 x 3 latin square design.

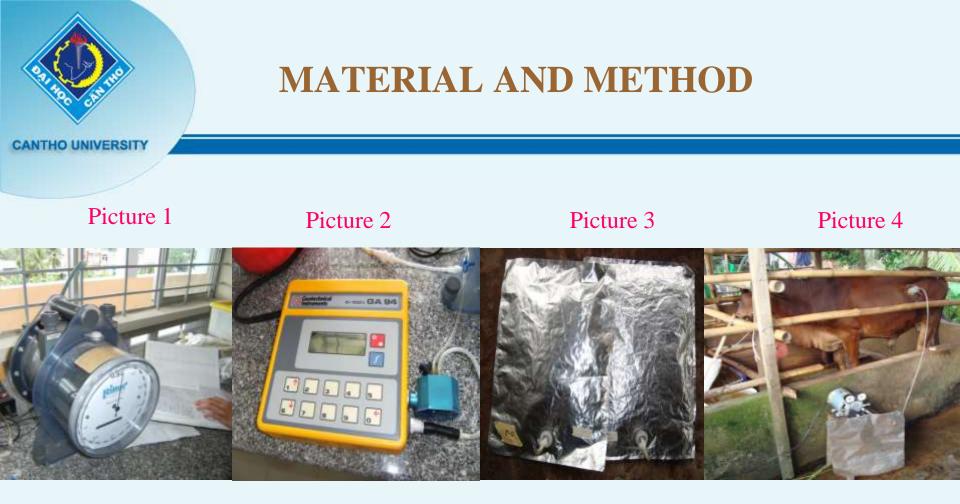
Treatment 1: S (sodium nitrate)
Treatment 2: AM (Ammonium nitrate)
Treatment 3: U (Urea)

- Each period: 4 weeks; 2 weeks for adaptation and 2 week for experiment

Table 1. Percent of ingredient of diets for experiment (DM%)

Feeds	% of Basal diet of SN	% of Basal diet of Urea	% of Basal diet of AM
NaOH-Rice straw	48.4	52.8	52
Molasses	20	20	20
Cotton seed meal	20	20	20
Grass	5	5	5
Sodium nitrate	6.6	0	0
Urea		2.2	0
Ammonium nitrate			3

CANTHO UNIVERSITY


Cattle were fed mixed diets:

- •NaOH-treated rice straw
- •Para grass
- •Cotton seed meal
- •Molasses
- And one of the three soursesof N

•Cattle were offered feed two times/ day, at 8: AM and 15: PM.

• Fresh water always was available.

1.Machine to measure 2.Machine to measure volume of rumen gas percent of rumen gas

3. Rumen gas containing4.Rumen gas collecting**Special bags**System

Measurement:

- Feed intake was collected every day
- Growth rate: cattle were weighed after every two weeks of experiment.
- Rumen gas samples were collected for measuring methane and carbon dioxed.

CANTHO UNIVERSITY

RESULTS AND DISCUSION

Table 2: Percent of methane and CO_2 of in rumen gas (%)

	Sodium nitrate	Ammonium nitrate	Urea	SEM	Prob
Methane, %					
8.00am	9.3	10.5	13.2	0.82	0.14
11.00am	3.13 ^a	4.13 ^a	7.37 ^b	0.27	0.014
CO ₂ , %					
8.00am	25.3ª	27.9 ^a	37.8 ^b	0.81	0.015
11.00am	11.6	17.6	25.6	1.93	0.071

RESULTS AND DISCUSION

CANTHO UNIVERSITY

Table 3. Mean values for change in live weight of cattle fed NaOH-treated rice strawand fermentable rumen N from sodium nitrate, ammonium, nitrate or urea

	Sodium nitrate	Ammonium nitrate	Urea	SEM	Prob
Live weight, kg					
Initial	190	195	194	2.33	0.39
Final	196	201	200	2.1	0.39
Daily gain	0.476	0.453	0.429	0.024	0.5
DM intake,					
kg/d	5.57	5.52	5.43	0.11	0.7

CONCLUSION AND SUGGESTION

✓ Nitrate as fermentable nitrogen supplement to inhibit methane production in cattle.

✓ Need to study promotion ammonia formation in rumen (introduce sulphur in diet).

THANK YOU VERY MUCH FOR YOUR ATTENTION

An giang- 2009

Ho Quang Do

www.ctu.edu.vn