Intenational Workshop

"Livestock, Climate Change and the Environment"

-----000-----

Prediction of methane production in dairy cows based on fecal near infrared reflectance spectroscopy

TRAN HIEP

Hanoi University of Agriculture

Scientific advisor: Emmanuel BOURDON

Philippe LECOMTE

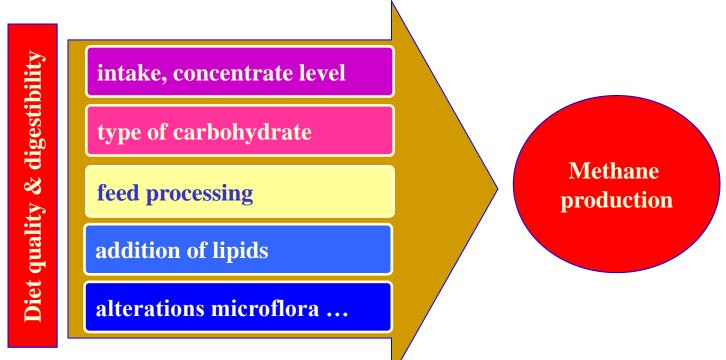
Paulo SALGADO

Nguyen Xuan TRACH

INTRODUCTION

Agriculture and global climate change

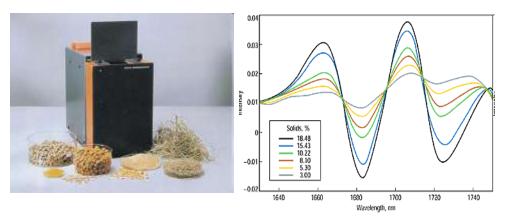
world climate change:


agriculture: CO₂, N₂O, CH₄ emission

- \checkmark CH₄ has the highest effect
- ✓ Effect of CH₄ is 300 times that of CO₂
- ✓ And is 20 times that of N_2O

Livestock and global climate change

animal livestock:


- ✓ from livestock, manure management: 16% CH₄ in agricultuture
- ✓ from ruminants: > 80% (100 million tonnes/yr)
- \Rightarrow It is important to estimate CH₄ emission from ruminant
- **☞** diet factors affecting CH₄ emission from ruminant:

⇒ Approche evaluating diet can be used to estimate methane production

Novel approach

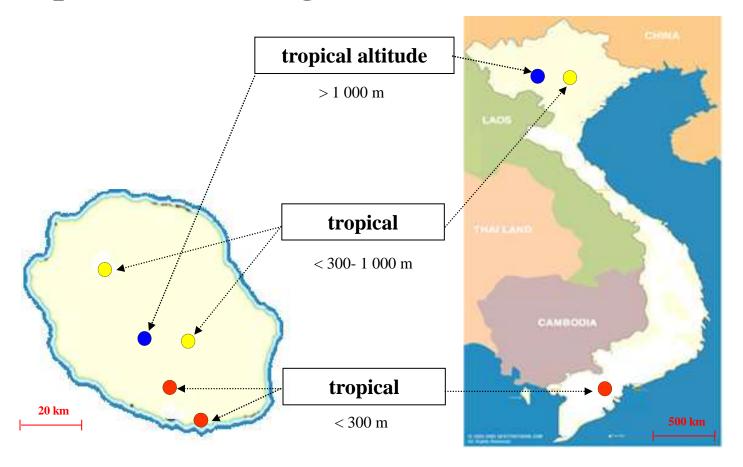
Near Infrared Reflectance Spectroscopy (NIRS)

**NIRS prediction of feed and diet quality:

- ✓ feed chemical composition
- ✓ feed digestibility and available energy contents

Fecal NIRS prediction of diet quality and digestibility:

- ✓ feed intake, diet quality (CP, NE, NDF, ADF...)
- ✓ digestibility (CP, NE, NDF, ADF...)

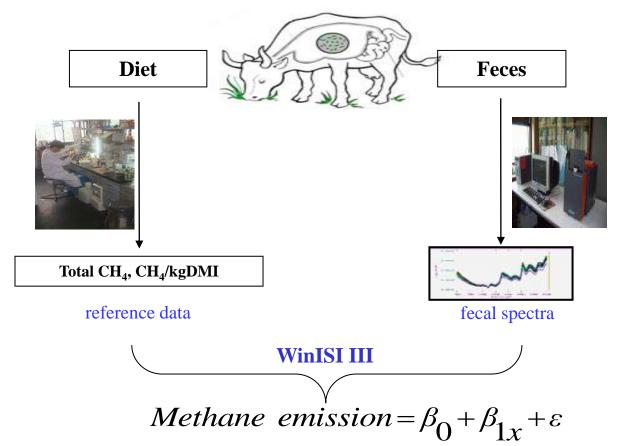

 \Rightarrow It is possible that we could estimate CH₄ emission based on fecal NIRS

Objective

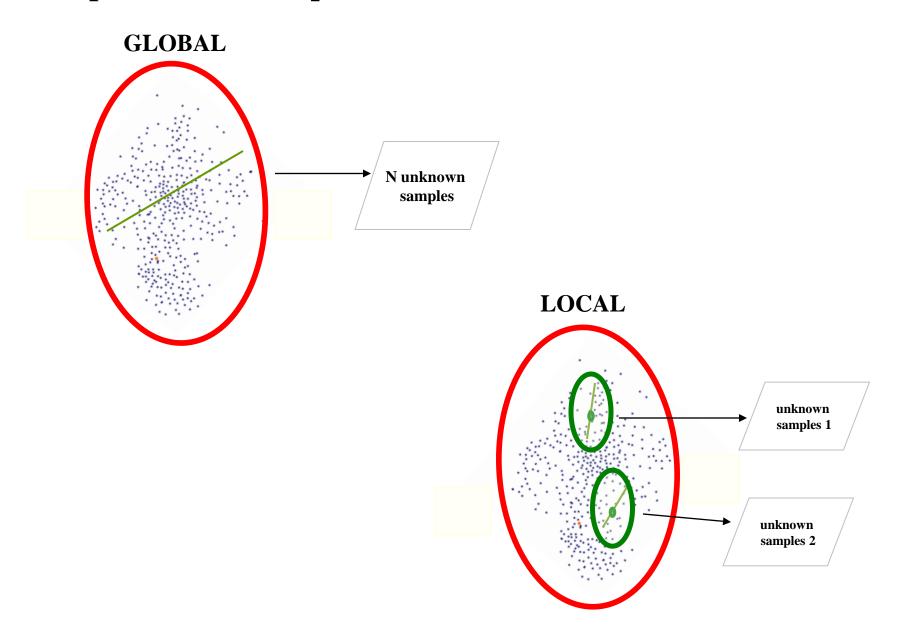
- ✓ to predict methane production in dairy cows using fecal NIRS
- ✓ to compare different muti-regression methods (Global and Local calibration)

METHODOLOGIES

☆ experimental design:


☆ data collection:

Data (intake + feces): 1322 dairy cows

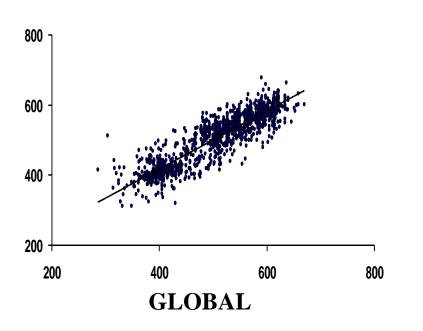

☆ reference method: Moe et Tyrell (1980)

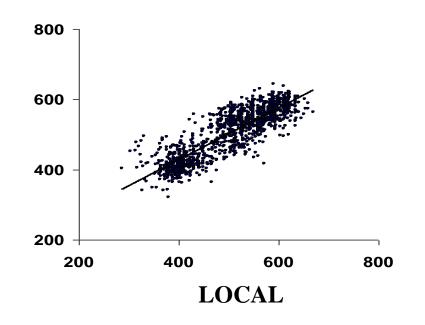
CH4 l/d = 86.1+67.0*Cell+43.9* Hemi+12.9*Starch&Sugar (brut matter ingested kg/d)

☆ prediction method:

☆ prediction techiques:

RESULTS & & DISCUSSION

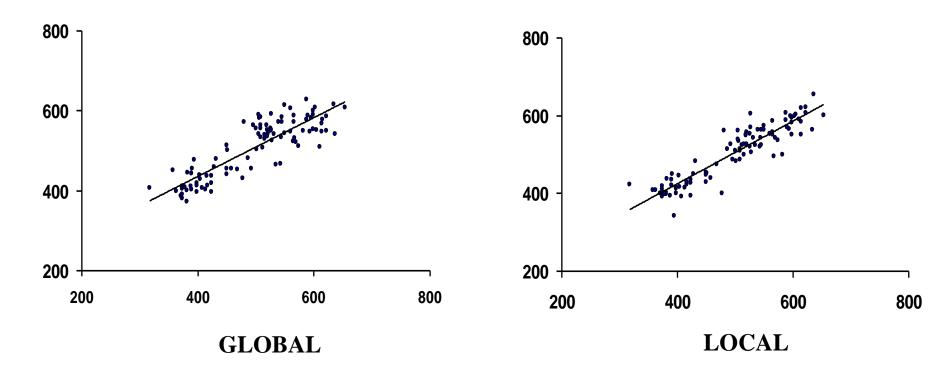

- **Calibration statistics (whole data)**
- **Validation statistics (validation data)**
- **Prediction statistics (averaged data)**


Calibration statistics of Global and Local equations

(whole individual data: N = 1322)

variables	GLOBAL		LOCAL		improprement,%	
	SEc	\mathbb{R}^2	SE c	\mathbb{R}^2	SEc	\mathbb{R}^2
Total CH4, 1/d	38	77	35	81	8	4
Efficience CH4, l/kg DMI	1.5	84	1,4	86	7	2

 $SE_c = standard\ error\ of\ calibration$; $R^2 = coefficient\ of\ determination$

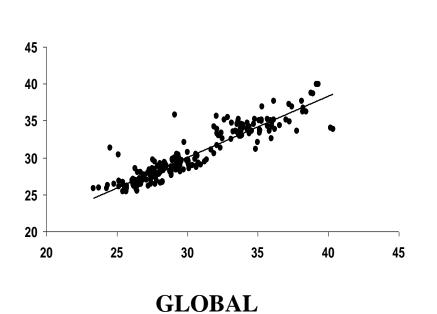


Validation statistics of Global and Local equations

(individual independant data: N = 100)

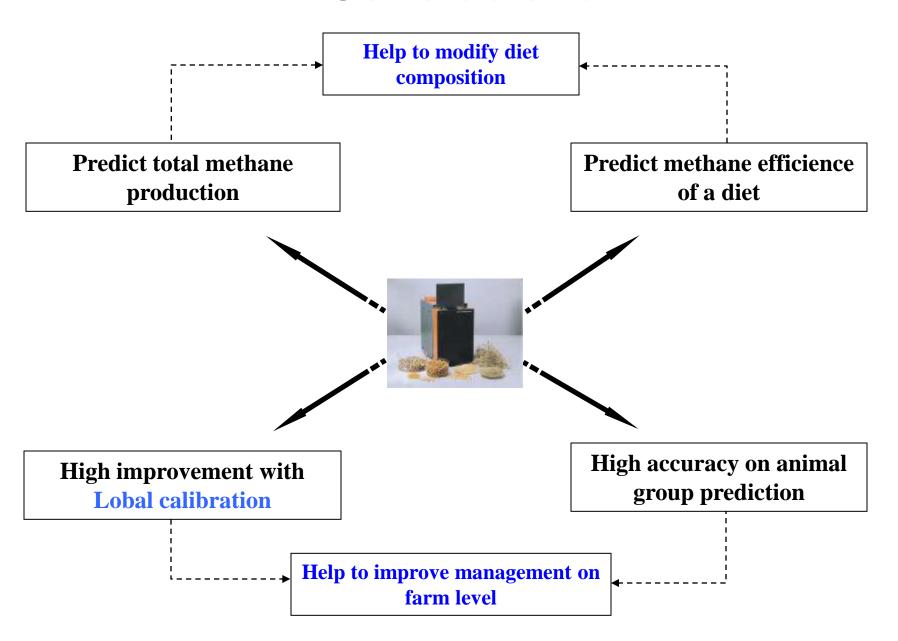
variables	GLOBAL		LOCAL		improprement,%	
	SEc	\mathbb{R}^2	SE c	\mathbb{R}^2	SEc	\mathbb{R}^2
Total CH4, 1/d	44	74	33	84	25	10
Efficience CH4, l/kg DMI	1.7	77	1,5	80	12	13

 $SE_c = standard\ error\ of\ calibration\ ;\ R^2 = coefficient\ of\ determination$




Prediction statistics of Global and Local equations

(averaged data: N = 220)


variables	GLOBAL		_	LOCAL		improprement,%	
	SEc	\mathbb{R}^2		SE c	\mathbb{R}^2	SEc	\mathbb{R}^2
Total CH4, 1/d	39	80		21	94	46	15
Efficience CH4, l/kg DMI	1,5	85		0,9	95	40	10

 $SE_c = standard\ error\ of\ calibration\ ;\ R^2 = \overline{coefficient\ of\ determination}$

Conclusions

Perspectives

- ① Make real reference data from in-vitro and in-vivo experiments ⇒ Develop
 fecal NIRS prediction model for methane emmision
- ② Evaluate zootechnique and enviromental efficiency of cattle production in Vietnam
- ③ Study on techniques to reduce methane emission
- Paralell with reduction in Nitrogen excretion
 - ⇒ Appropriate diets maintaining animal performance but reducing both CH4 emission and N excretion

PROFIL FECAL DE RATION

Commémoratifs échantillon:

Code demandeur: Nature:

Date prélèvement: NIRS Number: test fec pr

Demandeur: Sample Date: 08/08/2008 19:38:55

Objet: Product Code: (26) Prédiction FECES VI

Objet:		(26) Prediction FECES VL		
	<u>Unités</u>	Resultats	GH	
DMi	KG/jpur	19.6	1.1	
DMIcon	Kg/j	14.0	1.2	
pDMcon	% MS	68.3	1.2	
UFLtot-j	UFL/j	16.6	1.1	
PDItot-j	PDI/j	1 855.7	1.3	
OMDp	%MO	64.2	1.9	
UFL-kg_ration	UFL/Kg MS	0.8	1.9	
UFLkg_fourr	UFL/kg MS	0.7	1.7	
UFL_kgCC	UFL/kg	0.9	1.5	
CPpDM	%MS	15.8	1.4	
NDFpDM	%MS	40.4	1.4	
pNDFfour	% MS	52.3	1.6	
dNDF	% NDF	47.4	1.7	
ADFpDM	% MS	24.0	1.8	
CH4total	lit./jour	552.2	1.1	
	DMIcon pDMcon UFLtot-j PDItot-j OMDp UFL-kg_ration UFLkg_four UFL_kgCC CPpDM NDFpDM pNDFfour dNDF ADFpDM	DMi KG/jpur DMIcon Kg/j pDMcon % MS UFLtot-j UFL/j PDItot-j PDI/j OMDp %MO UFL-kg_ration UFL/kg MS UFLkg_fourr UFL/kg MS UFL_kgCC UFL/kg CPpDM %MS NDFpDM %MS NDFpDM %MS pNDFfour % MS dNDF % NDF ADFpDM % MS	Unités Resultats DMi KG/jpur 19.6 DMIcon Kg/j 14.0 pDMcon % MS 68.3 UFLtot-j UFL/j 16.6 PDItot-j PDI/j 1 855.7 OMDp %MO 64.2 UFL-kg_ration UFL/kg MS 0.8 UFLkg_four UFL/kg MS 0.7 UFL_kgCC UFL/kg MS 0.9 CPpDM %MS 15.8 NDFpDM %MS 40.4 pNDFfour % MS 52.3 dNDF % NDF 47.4 ADFpDM % MS 24.0	

THANK YOU FOR YOUR ATTENTION