

# Re-designing aquaculture systems to avoid pollution

Jan Erik Lindberg Dept. of Animal Nutrition and Management

## Planetary boundaries

- Climate change
  - Atmospheric  $CO_2$
  - Change in radiative forcing
- Rate of biodiversity loss
  - Extinction rate
- Nitrogen cycle
  - N<sub>2</sub> removed from the atmosphere for human use

- Phosphourus cycle
  - P flowing into the oceans
- Ocean acidification
- Global freshwater use
- Chemical pollution
- Change in land use
  - Converted to cropland
- Stratospheric ozone depletion
- Atmospheric aerosol loading

[Rockström et al. 2009. A safe operating space for humanity. Nature 461, 472-475]

## World Development Report 2008

#### Poverty

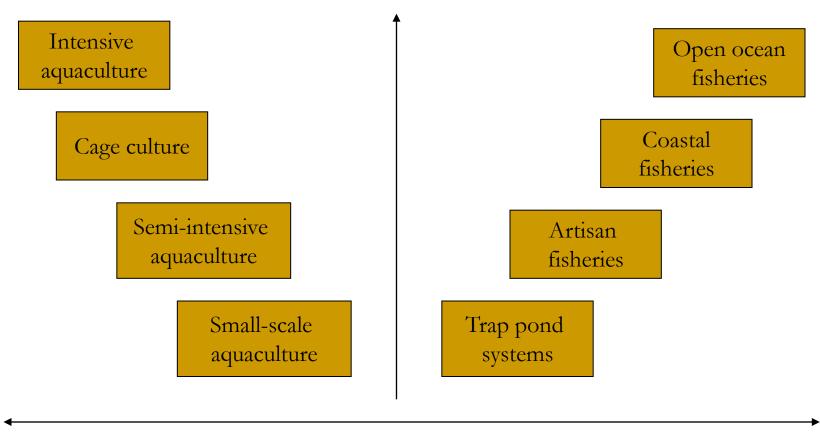
- Three out of four poor people in developing countries live in rural areas
- 2.1 billion are living on less than US \$ 2 a day and 880 million on less than US \$ 1 a day
- Most depend on agriculture for their livelihoods

#### Poverty alleviation

 "GDP (Gross Domestic Product) growth originating in agriculture is at least twice as effective in reducing poverty as GDP growth originating ouside agriculture"

## World Development Report 2008

- Pathway out of poverty -Using agriculture for development
  - "Improving the productivity, profitability and sustainability of small-holder farming"
  - Improve integration between system components at farm level




## World Development Report 2008

- Agriculture
  - Crops, livestock, agroforestry and aquaculture
  - A source of livelihoods for an estimated 86% of rural people
- Developing world
  - □ 5.5 billion people
  - □ 3.0 billion people (>50 %) live in rural areas
  - □ 2.5 billion people (>80 %) involved in agriculture
  - □ 1.5 billion people (~50 %) in small-holder households

## Aquaculture, fisheries and capital investment

Capital intensity



Aquaculture

Fisheries

## Aquaculture and food production

- The fastest growing food production sector in the world
  - $\square$  10 % annual growth over the last two decades
  - □ Mainly in Asia (90 %)
- 2009
  - Aquaculture supplying 50 % of total fish and shell-fish for human consumption (FAO, 2009)

## Aquaculture

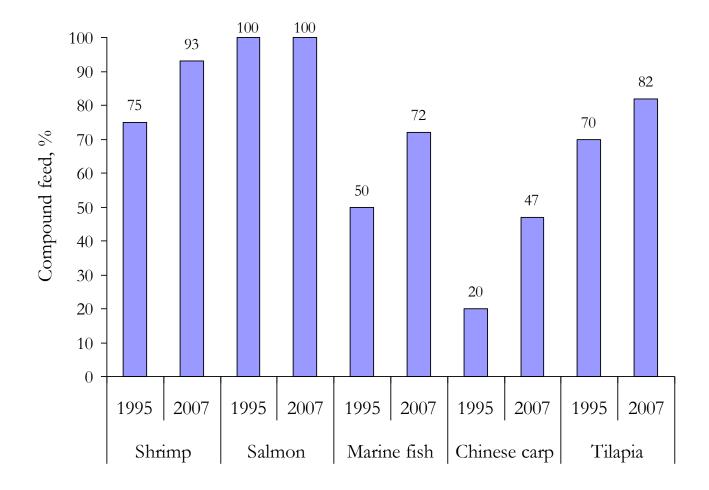
- Use of water resources for food production
  - Culturing of fish and other aquatic animals
    - Snails, frogs, shrimp, crabs etc.
  - Culturing of water plants
    - Duckweed, azolla, water spinach etc.

- Stagnant or moving water
- Different water sources
  - Rivers, lakes, water reservoires
    - Cage culture
  - □ Flooded fields, canals
    - Enclosures
  - Ponds
    - Earth ponds
    - Constructed (brick, concrete etc.)

## Ponds, cages and enclosures

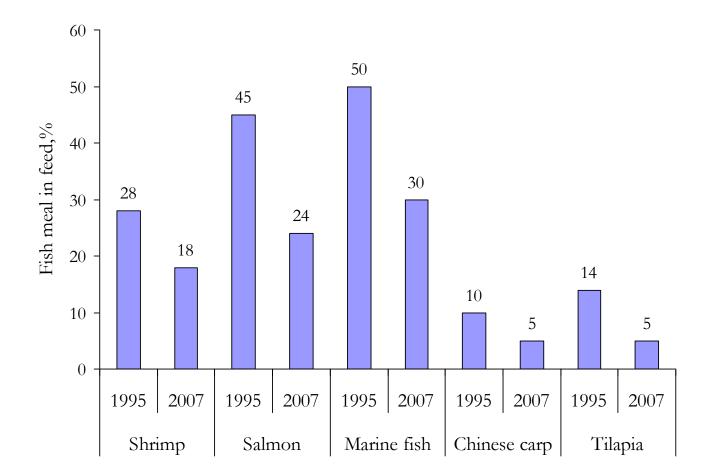






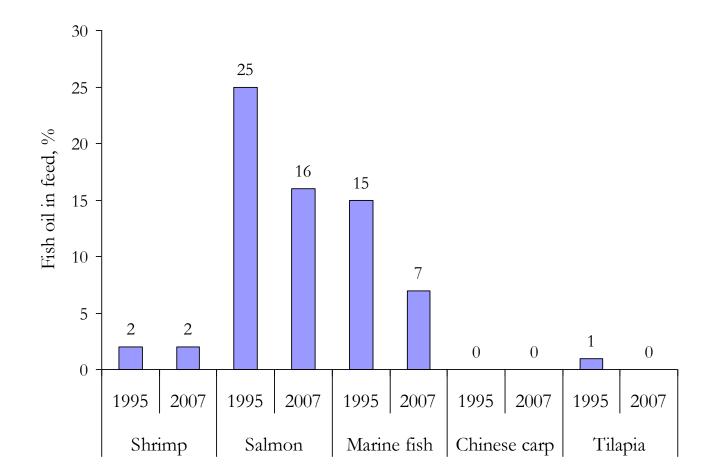

## Aquaculture systems

#### Different aquaculture systems


- Extensive
  - Available water resurces
    - □ Wild fish and aquatic animals
  - Small-scale pond cultures
    - □ No or minimal nutrient input to ponds (irregular waste-feeding)
- Semi-intensive
  - Small-scale pond cultures
    - □ Regular nutrient input to ponds (waste-fed)
  - Simple net cages
    - □ Fattening of cultured fish for marketing
- Intensive
  - Large-scale cage or pond cultures
  - Feeding of fish

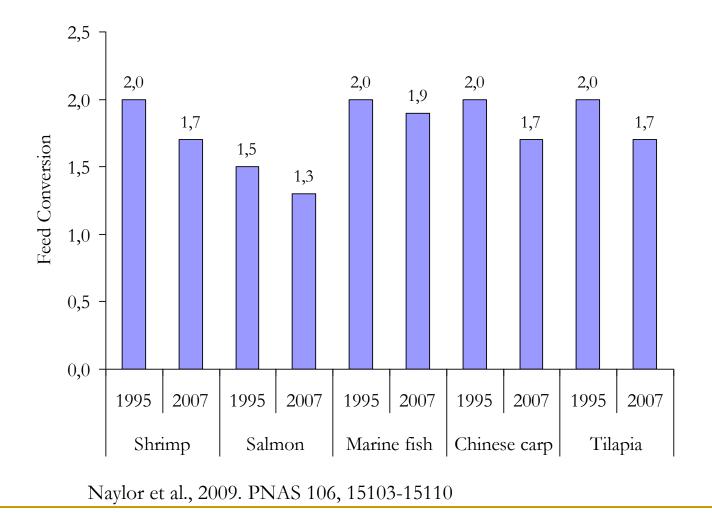
## Compound feed for fish culture




Naylor et al., 2009. PNAS 106, 15103-15110

## Fish meal use for fish culture




Naylor et al., 2009. PNAS 106, 15103-15110

### Fish oil use for fish culture



Naylor et al., 2009. PNAS 106, 15103-15110

## Feed conversion in fish



## Global fish supplies

- "Farming can contribute to global (net) fish supplies, only if current trends in fish meal and fish oil use for aquaculture are reversed"
  [Naylor et al. 2000. Nature 405, 1017-1024]
- Aquaculture's share of global fish meal consumption ~ 70 % and of global fish oil consumption ~ 90 %
   [Naylor et al., 2009. PNAS 106, 15103-15110]

## Striped catfish (*Pangasianodon hypopthalamus*) or "ca tra" production

- The Mekong delta
  - An Giang, Can Tho, Dong Thap, Vinh Long
- >680,000 tonnes produced in 2007
  - □ 645 million US \$
  - 90% for export
- Average farm size 4 ha
- Commercial feed used by most (97 %) farms



## Striped catfish (*Pangasianodon hypopthalamus*) or "ca tra" production

- Discharge of N
  - 47.3 kg N per tonne of fish produced
  - >30,000 tonnes of N into the Mekong river
- Health management
  - Chemical treatment
  - Antibiotics
  - Feed additives
  - Regular water exchange



## What can be done?

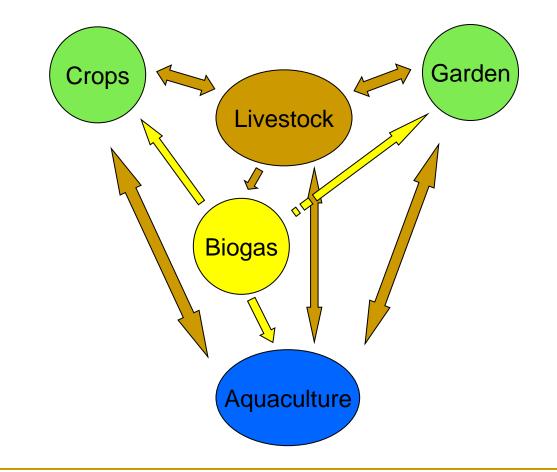
- Reduce the use of fish meal and fish oil in aquaculture and livestock production
  - Plant based protein feed sources
  - Choice of fish species for culture
- Integrated production systems
  - □ Integrate aquaculture, crop and livestock production
- Use closed fish production systems with control of nutrient and particle flow
  - Ponds or other land-based systems

## Plant based protein sources

- Fish species
  - Carnivorous
    - Salmonid species, cod, perch, snakehead
  - Omnivorous
    - Carp, tilapia, catfish
  - Herbivorous
    - Carp

- Carbohydrate digestive and metabolic capacity
  - Major limiting factor

## Carbohydrate in fish diets


| Fish species    | Carbohydrate of diet, % |
|-----------------|-------------------------|
| Salmon          | 10                      |
| Rainbow trout   | 15                      |
| Channel catfish | 25                      |
| Common carp     | 30-40                   |
| Indian carp     | 20-30                   |

## Integrated farming

Integrated farming involving aquaculture

- Definition
  - "The concurrent or sequential linkage between two or more activities, of which at least one is aquaculture"
- Benefit
  - Synergistic rather than additive effects
- **•** The link
  - Use (recirculation) of nutrients within the system
    - □ Mainly nitrogen (N) and phosphorus (P)

## Integrated aquaculture and livestock production



## Integrated systems improve sustainability

#### Nutrient recycling

Nutrients retained in pond sediments and water.

#### Nutrient concentration

 Cost effective gathering of nutrients from common property. Fish harvest nutrients through waste.

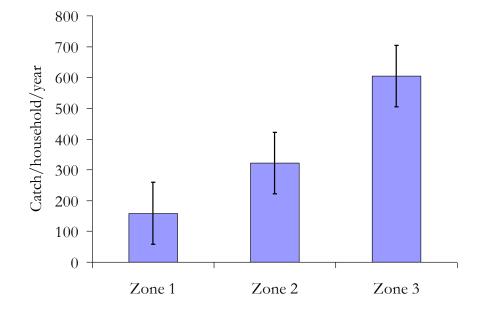
#### Diversity

A range of livestock, utilize a variety of available feed resources.
 Polycultures within aquatic systems.

## Integrated systems improve sustainability (cont.)

- Stability
  - Livestock reduce perturbation on households during time of physical or social stress. A water body improves the stability of water availability for the whole farming system.
- Capacity
  - Livestock improves soil quality and fertility, grazing may improve species diversity. Increased water and nutrient holding improves productive capacity around the pond.
- Economic efficiency
  - Cash income from livestock products. Polyculture increases opportunities for strategic marketing of fish.

## Rice-fish systems


- Common in the lower Mekong River basin
  - Lowland rural households
  - Cultivation of rice
    - Dominating agricultural activity
    - Rice, bulk of carbohydrates and protein in the diet
  - Fish and other aquatic animals cultivted in the ricefields
    - The most important source of animal protein in the diet

| Area        | Fish consumption<br>(kg/caput/year) |
|-------------|-------------------------------------|
| NE Thailand | 20-32                               |
| Cambodia    | 14-57                               |

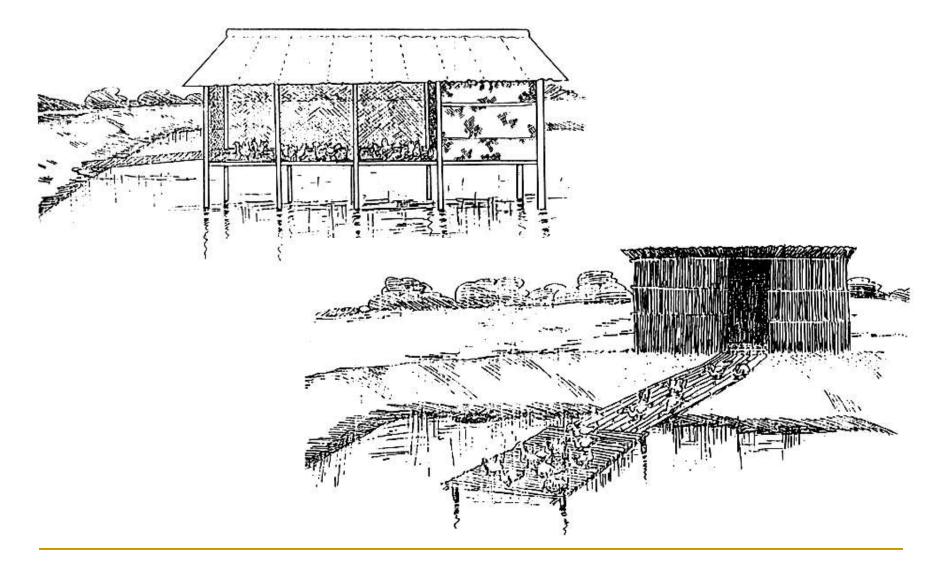
## Rice-fish systems

#### Seasonal fishery

- Rainy season
- Migration of wild fish and other aquatic animals
- Use stored nutrients and photosynthesis
- Traps and trap ponds
- Quality of the water resource will influence the catch



Gregory and Guttman (2002)


## Integration of livestock and fish

- Integration of livestock and fish
  - "The use of livestock manure in fish culture"
    - On-farm; direct use of fresh manure
    - Off-farm; collected and transported to end user





## Manure collection



### Input of animal and other organic waste

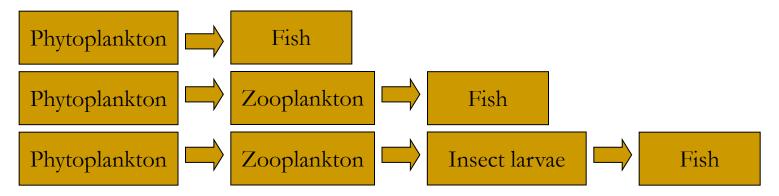
- Input has to be properly balanced to pond productive capacity
  - Pond design (water depth)
  - □ Frequency of waste addition
  - Size and species of fish
  - Harvest strategy
- Dissolved oxygen (DO)
  - Critical for pond productivity to maintain adequate water quality, in particular DO

## The pond ecosystem

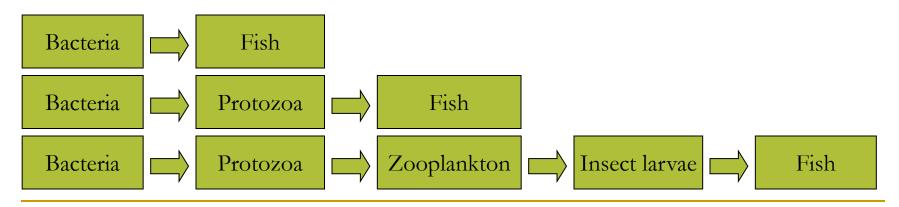
Living organisms (Biotic community)

"The producers" and "Consumers" Non-living community

Inorganic and organic compounds


## The pond ecosystem

- Autotrophic food chain
  - "The producers"
    - Solar energy dependent
  - Plant-based
    - Phytoplankton
    - Macrophytes
- Heterotrophic food chain
  - "The consumers"
    - Invertebrates
    - Fish
  - "The decomposers"
    - Microorganisms
      - Organic matter




## The pond ecosystem

#### Autotrophic food chain



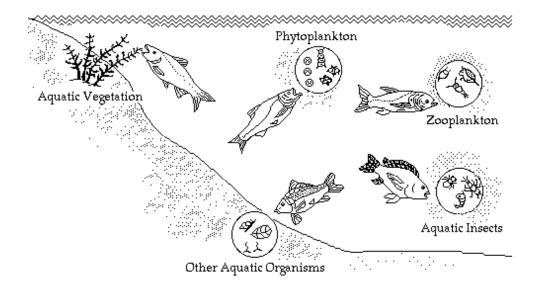
#### Heterotrophic food chain



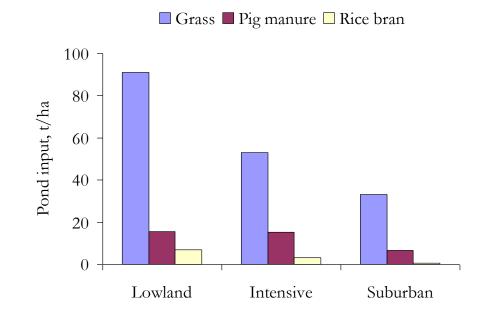
## The VAC farming system

#### VAC

- <u>v</u>oun (garden), <u>a</u>o (pond),
   <u>c</u>huong (livestock)
- Red River delta in Vietnam
  - Rice-based farming systems
    - Limited arable land
    - Farm size ~ 5000 m<sup>2</sup>
  - Recycling of nutrients within the system
  - □ Small-scale aquaculture
    - Pond input; grass, pig manure and rice bran




## VAC fish pond


Fish species

#### □ Carp

- Common carp
- Chinese carp
  - Grass
  - □ Silver
- Indian carp
  - Image: Mrigal
  - 🛛 Rohu
- Other
  - □ Bighead & mud carp
- Tilapia
- Catfish



## VAC - major pond input



Fish production

- 1900-3400 kg/ha/year on average
- □ Range 30-6700 kg/ha/year

Luu et al. (2002)

## Public health and use of animal waste

#### Livestock and fish

- Involved in both passive and active transfer of a range of parasites and diseases to humans
  - Trematodes, nematodes and cestodes
- Intermediate hosts for human parasites
- □ Use of anti-microbials and chemotheropeutants
- □ Transfer of pathogens
  - Faecal coliforms, Salmonella, bacteriophage
- Minimize cross-contamination
  - Hygiene
  - Improved sanitation

## The environment will benefit from integration of aquaculture and livestock

- Can stabilize nutrient and water use
- Reduce run-off and leaching of nutrients
- Reduce percolation into subsoil
- Improve efficiency of water use on-farm
  - Conservation and storage of rain and run-off water in ponds and dams
- Reduce methane production
  - Grazing of soil-water boundaries by fish support aerobic conditions
- Biodiversity can improve
  - Use of indigenous fish in culture
  - Combine wildlife and livestock

### In summary

- Reduce the use of fish meal and fish oil in aquaculture and livestock production
  - More use of plant based protein feed sources
  - Select omnivorous or herbivorous fish species for culture
- Develop integrated production systems
  - □ Integrate aquaculture, crop and livestock production
  - Sun-driven production systems
  - □ Fish polyculture
- Use closed fish production systems with control of nutrient and particle flow

## Thank you for your attention!

