

-000-----

Current situation of industrial

chicken manure use in the red river delta and initial results of composting treatment

Bui Huu Doan

Faculty of Animal Science and Aquaculture, Hanoi University of Agriculture

Email: <u>bhdoan@hua.edu.vn</u>

An Giang, 16-18 Nov

- Productivity of industrial chicken's manure of the Red River Delta was calculated by secondary data from Department of Livestock Husbandry, Ministry of Agriculture and Rural Development in 2007
- Situation of chicken manure usage of households were investigated by semi-structure questionaire at 105 households

-----000------

Treatment of manure by wet and dry method, including 4 formulas (200kg of manure per each formula) with EM product as showed in table:

Formula	Chicken manure (%)	Molasses (%)	Rice bran (%)
F1 (with 1% EM enzyme)	90	5	5
F2 (with 1% EM enzyme)	90	0	10
F3 (with 1% EM enzyme)	90	0	10% tapioca
F4 (non EM enzyme)	90	0	10% tapioca

(1) EM enzyme in dry powder

- Identify diminishing level by weighing quantity of manure before and after (3, 4 and 5 composting weeks)
- Identify pH value with litmus paper at the time before and after (1, 2, 3, 4 and 5 composting weeks)
- Check the temperature at centre of the composting pile with a thermometer before and after composting (1, 7, 14, 21, 28) and 35 days)

Chemical analysis of manure: based on (AOAC, 1975)
DM: by drying the samples
Crude protein: by Micro Kjeldahl method
Crude fiber: by Henneberg and Toman methods
Total ash: by dry burning at 550 °C
Ca: by standard method
P: by methods of volume and weight

"Livestock, Climate Change and the Environment"

AND DISCUSSIONS

-----000-----

Table 1. Situation of chicken manure use at some investigated
households (HHs)

Using purpose	No. of HHs	Rate (%)	Used amount (ton)	Rate (%)	Non processed	Rate (%)
Crops planting	90	85.71	35.06	25.26	15	16.67
Feed for fishes	30	28.57	77.52	55.86	28	93.33
Rice planting	20	19.05	23.39	16.86	15	75.00
Fruit tree planting	5	4.76	2.80	2.02	3	60.00
Biogas	4	3.81	-	-	0	0
Livestock production	0	0	0	0	0	0
Total	125	_	138.77	100	-	-

-000-----

-000-----

Table 2. Methods used for processing chicken's manure of
households

Processing methods	No. of applying HHs	Rate (%)
Composting fresh manure only	36	40.91
Composting with additives	45	51.13
Earthworm and fly larva nourishing	3	3.41
Using for biogas	4	4.55
Total	88	100

-----000------

Table 3. Change of manure's weight during composting process

Formula	Diminishing rate (%)					
	Dry composting			Wet composting		
	Week 3	Week 4	Week 5	Week 3	Week 4	Week 5
F1	14.75	16.21	17.85	29.75	33.15	34.05
F2	15.25	17.25	19.32	30.25	34.65	35.65
F3	14.92	16.45	18.25	28.95	33.25	34.15
F4	15.98	17.98	19.85	30.67	34.95	35.25
Average	15.04	17.09	18.75	29.91	34.00	34.78

Livestock, Climate Change and the Environment"

Table 4. Change of PH level in manure during the dry composting time

Composting duration (week)	F1	F2	F3	F4
0	7.26	7.26	7.26	7.26
1	5.82 ± 0.04	6.01 ± 0.02	5.95 ± 0.06	6.15 ± 0.04
2	5.31 ± 0.07	5.52 ± 0.06	5.29 ± 0.07	5.57 ± 0.08
3	5.19 ± 0.03	5.37 ± 0.04	5.17 ± 0.09	5.42 ± 0.05
4	5.07 ± 0.09	5.35 ± 0.02	5.14 ± 0.02	5.40 ± 0.06
5	5.09 ± 0.02	5.37 ± 0.08	5.18 ± 0.05	5.45 ± 0.03

Change of PH level in manure during the dry composting time

"Livestock, Climate Change and the Environment"

Table 4. Change of PH level in manure during the wet composting time

Composting duration (week)	F1	F2	F3	F4
0	7.83	7.83	7.83	7.83
1	6.87 ± 0.05	6.93 ± 0.08	6.68 ± 0.06	6.72 ± 0.06
2	6.27 ± 0.05	6.45 ± 0.05	6.39 ± 0.07	6.45 ± 0.04
3	6.21 ± 0.06	6.39 ± 0.05	6.22 ± 0.05	6.25 ± 0.05
4	6.20 ± 0.09	6.37 ± 0.06	6.21 ± 0.09	6.23 ± 0.08
5	6.28 ± 0.06	6.40 ± 0.07	6.27 ± 0.07	6.31 ± 0.06

"Livestock, Climate Change and the Environment" --000------

Change of PH level in manure during the wet composting time

Table 5. Change of temperature of manure during the drycomposting process

Days of compost	F1	F2	F3	F4
0	32.41	32.41	32.41	32.41
1	44.52±.56	44.61±2.02	44.39±2.63	41.77±1.89
7	52.54±2.35	52.65±2.45	52.33±2.79	49.75±2.22
14	51.35±2.46	50.57±1.89	52.44±2.15	52.13±1.85
21	61.66±1.78	61.22±2.31	61.55±1.68	54.18±1.76
28	57.52 ± 1.89	56.53 ± 2.42	56.36 ± 2.49	50.15 ± 2.18
35	47.57±2.04	47.56±1.97	48.3 ± 1.56	45.52±2.04

-----000------

Change of temperature of manure during the dry composting process

-----000------

Table 5. Change of temperature of manure during the wetcomposting process

Days of compost	F1	F2	F3	F4
0	32.41	32.41	32.41	32.41
1	40.72±1.85	40.34±1.81	41.64±2.66	38.15±2.11
7	50.75±2.67	51.38±2.11	50.65±1.98	46.78±2.07
14	55.76±2.46	55.53±2.53	54.97±1.64	56.36±1.68
21	62.348±1.77	63.57 ± 1.67	62.92 ± 2.46	58.17 ± 2.32
28	58.43 ± 1.52	60.68 ± 2.05	59.46 ± 2.23	55.39 ± 2.09
35	46.79±2.34	46.34±2.43	47.39±1.71	42.17±1.85

"Livestock, Climate Change and the Environment"

Change of temperature of manure during the wet composting process

-----000------

Table 6. Nutritional compositions of chicken's manureafter 4 composting weeks

Nutritional composition (% DM)	F1	F2	F3	F4
DM	37.04 ± 0.35	70.45 ± 0.04	35.48 ± 0.04	71.28 ± 0.05
Protein	15.15 ± 0.02	16.00 ± 0.25	14.85 ± 0.24	14.03 ± 0.34
Total ash	16.56 ± 0.05	14.25 ± 0.45	17.53 ± 0.26	15.05 ± 0.26
Са	6.05 ± 0.03	5.02 ± 0.04	7.35 ± 0.06	5.15 ± 0.42
Р	0.85 ± 0.26	1.12 ± 0.04	1.35 ± 0.04	1.26 ± 0.02

Nutritional compositions of chicken's manure after 4 composting weeks

-----000------

Table 6. Nutritional compositions of chicken's manureafter 5 composting weeks

Nutritional composition (% DM)	F1	F2	F3	F4
DM	36.55 ± 0.04	70.05 ± 0.03	35.15 ± 0.24	70.95 ± 0.5
Protein	$14,95 \pm 0,05$	$16,60 \pm 0,02$	$14,25 \pm 0,06$	$13,95 \pm 0,04$
Total ash	$16,85 \pm 0,02$	$14,\!64 \pm 0,\!05$	$18,05 \pm 0,27$	$15,\!45 \pm 0,\!35$
Са	7.30 ± 0.03	5.46 ± 0.03	7.95 ± 0.27	6.01 ± 0.26
Р	1.95 ± 0.05	1.52 ± 0.27	2.53 ± 0.24	1.85 ± 0.02

"Livestock, Climate Change and the Environment"

EKARN

G F1

F2

G F3

G F4

Nutritional compositions of chicken's manure after 5 composting weeks

- Each year, 253,299 tons of manure were eliminated in the Red river delta
- Most of farming households used fresh manure for fish raising (55.86%), follow by crop planting (25.26%) and for rice cultivation(16.86%).
- Weight of chicken manure reduced from 20 to 35 % while dry or wet composting
- The highest temperature of the composting pile after composting week reaches to 57-58 0C
- pH level of the composting pile decreased continuously (5,0-6,4%) after 5 weeks of dry or wet composting methods

--000------

- After 4 weeks of composting, color and smell of chicken manure are improved obviously
- Protein content in chicken manure was rather high (13.9- 16.6 %).
 Content of DM, total ash, Ca, fibrous substances in were very considerable
- After composted, nutritional and biological value of chicken manure were enhanced obviously (best value after 4 weeks)
- Adding molasses, rice bran or cassava powder with EM enzyme can enhance nutritional value as well as sense perception of manure
- Chicken manure can completely be reused for animal feed, especially ruminating animals

